
  

 

Abstract— Recent studies revealed that hand gesture-based 

interfaces can complement therapies for individuals with upper 

motor impairments and reduce the need of traditional 

rehabilitation sessions through hospital visits. Unfortunately, 

existing gesture-based interfaces have been developed without 

considering the physical limitations of users with motor 

impairments. An analytic approach was presented in our 

previous work to convert existing gesture-based interfaces 

designed for able-bodied individuals to be usable by individuals 

with quadriplegia using the Laban Theory of Movement. This 

paper extends the previous work by including gesture 

variability analysis (based on Uncontrolled Manifolds theory) 

and robotic execution. A WAM robotic arm was used to mimic 

gesture trajectories and a physical metric was empirically 

obtained to evaluate the physical effort of each gesture. At last, 

an integration method was presented to determine the 

accessible gesture set based on both the stability and empirical 

robot execution. For all the gesture classes, the accessible 

gestures were found to lie within 31% of the optimality of 

stability and work, respectively. 

I. INTRODUCTION 

Hand gestures have become an effective control modality 
for human computer interaction (HCI) leveraging on the 
quick growth of 3D optical sensors (i.e. Kinect® and Leap 
motion) [1] and accelerometers armband [2]. Recent studies 
indicate that playing exergames can benefit users with upper 
motor impairments, since gesture commands can complement 
users’ hands-off physical therapy [3], [4]. Unfortunately, 
commercial gesture-based consoles are developed without 
considering the physical constraints of users with motor 
impairments, neither their operational needs. Thus, there is a 
paradox: the same technologies that are usable to rehabilitate 
patients, cannot be accessed by those patients due to the very 
nature of their design. 

While assistive technologies (AT) and rehabilitation 
engineering have allocated major scientific and applied 
efforts to design gesture-based interfaces for individuals with 
disabilities for activities of daily living (ADL) [5], currently 
there is no generalizable solution to convert standard gestures 
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to those usable for individuals with motor impairments. The 
question of determining the optimal gesture sets usable for 
individuals with disabilities is an open research question.  

Related work leveraged on two approaches to determine 
optimal gesture sets for touchless interfaces: technology-
based approach [6] and human-based approach [7]. The 
objective of the technology-based approach is to select a 
gesture set that can facilitate system implementation [8], [9] 
To the contrary, the human-based approach determines 
gesture sets based on studying the usability of the interaction 
between users and automated systems [10], [11]. Previous 
research also considered the integration of human and 
technical approach together [12], [13].  

Regardless of the approach used to determine the gesture 
sets, either technology driven, user driven or hybrid, 
objective metrics can be applied to those selections [14]. For 
example, variability is an important objective metric to 
examine the mechanisms of human motor systems and 
evaluate human performance [15]. The Uncontrolled 
Manifold (UCM) framework provides a strategy to deal with 
redundant systems of human motion and was applied to 
analyze this variability [16]. It was first presented by Scholz 
and Schӧner [17] in a targeting task using a multi-joint limb 
and the joints have more DOFs than the hand. In that work, 
the UCM was applied to analyze the effect of variability on 
the pointing constancy. The UCM theory assumes that the 
task redundant space is structured according to the task [18], 
and was applied to test the stability of the task variables. The 
variability of the control variables (i.e. the joint 
configurations) can be decomposed into a component that lies 
within a manifold that does not affect the task variable (the 
UCM) and a perpendicular component that affects the task 
variable. Nisky and her colleagues [19] tested the stability of 
a task using a ratio between the variability that lies within the 
UCM and the variability that lies perpendicular to it. The task 
variable (using a set of control variables) was defined to be 
stabilized if the ratio is greater than one [20].  

Our previous work [21] presented a methodology that 

analytically and automatically project existing patterns of 

gestural behavior to match those of users with motor 

impairments and to make commercial gestural technologies 

accessible to users with physical impairments. An automatic 

gesture projection approach concerning physical limitations 

was presented to provide usable and effective candidate 

gestures for users with quadriplegia. A subjective method 

was used to determine the final gesture set from candidate 

gestures. 
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 This paper proposes three main contributions: (1) an 
analytic approach to analyze human arm variability based on 
the UCM framework and evaluates gestures based on the 
concept of stability; (2) simulate the constrained gestures 
using a WAM

TM 
robotic arm and present a metric to estimate 

work exhorted gestures’ physical work; and (3) integrate 
stability and work to determine the final accessible gesture 
set. 

II. BRIEF INTRODUCTION OF PREVIOUS WORK 

A. Problem Definition 

Our previous work [21] addressed the problem of “how to 
project standard gestures from a known manifold to a 
constrained (unknown) manifold that corresponds to the 
space where people with upper motor impairments use”. We 
provide here a short summary of our previously developed 
method to put this work in context. Refer to [21] for more 
details of this theory. Let 𝑮 denote a standard lexicon with 𝑁 

gestures and �̃� represent a constrained gesture lexicon 
corresponding to those gestures in 𝑮. 𝑔𝑛 and �̃�𝑛 (𝑛 =
1,2, … , 𝑁) denote the 𝑛th gesture in 𝑮 and �̃�, respectively 
(Eq. 1 and 2). Let ℒ denote a mapping from a gesture 
trajectory to a feature vector, and �̌� be a random gesture 
trajectory. 𝜳 denotes a set of pre-trained transform functions 
that maps the feature vector of a standard gesture to a set of 
feature vectors that correspond to constrained gestures. The 
problem is presented as: finding a constrained gesture lexicon 
to satisfy Eq. 3 and 4 (Figure 2). 

𝑮 = {𝑔1, 𝑔2, … , 𝑔𝑛 , … , 𝑔𝑁}   (𝑛 = 1,2, … , 𝑁) (1) 

�̃� = {�̃�1, �̃�2, … , �̃�𝑛, … , �̃�𝑁}  (𝑛 = 1,2, … , 𝑁) (2) 

�̃�𝑛 = arg min
 �̌�

‖ℒ(�̌�) − 𝜳(ℒ(𝑔𝑛)‖ 
(3) 

s.t. 𝑛 ≤ 𝑁, 𝑛 ∈ ℤ+, 𝑔𝑛 ∈ 𝑮, and �̃�𝑛 ∈ �̃� (4) 

 
Figure 2. Problem Definition 

B. Constrained Gesture Generation 

An analytic approach consisting four steps was presented 
in our previous work to solve the problem by converting an 
existing gesture-based interface designed for individuals 
without disabilities to be usable by individuals with upper 
motor impairments: (1) gesture trajectory acquisition and 
preprocessing; (2) feature extraction; (3) transformation; and 
(4) gesture generation. 

The first step collected two sets of gesture instances 
through interviews with able-bodied subjects and subjects 
with quadriplegia, respectively. The recorded trajectories 
were preprocessed to remove outliers and smoothed. In step 
(2), a 𝐾 dimensional feature vector (including Laban space, 
Kinematic, and Geometric features) was extracted from each 
gesture instance. Step (3) computed a transform function for 
each training gesture using regression trees [22]. In step (4), 
for each testing gesture, an iterative process with two steps 
was used to generate a candidate set using the pre-trained 
transform function and a gesture generator.  

Through the four-step process, a candidate gesture set 
was obtained for each testing gesture. A subjective approach 
was then applied to select the final gesture set [21]. While 
reported selected gestures complied with the user in terms of 
the total effort and preference, they may not be stable (in the 
sense of control) when they are in practical use. The current 
work addressed this issue. 

III. METHODOLOGY 

A stability-based filter employing UCM framework is 
used to acquire the variability for each gesture in the 
candidate set. The goal is to pick those gestures that allow for 
the largest redundancy of the motor system to construct the 

final gesture set �̃�. This filter is applied to identify 
differences in stability in joint configuration space for 
different gestures.  

A. System Architecture 

The architecture of the proposed system is illustrated in 
Figure 1. The final gesture set is determined through a five-
step procedure: (a) modeling constrained human arm system; 
(b) recording and pre-processing the skeleton data using 
Kinect sensor; (c) computing variability and stability indices 
for constrained candidate gestures based on UCM 
framework; (d) simulating the gestures using a WAM robotic 
arm and evaluating gestures based on an empiric metric 
(work); (e) determining the final gesture set based on an 
integration of stability and work. 
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Figure 1. System Architecture 
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B. Constrained Human Arm System Model 

The Kinematic chain of a human arm system is modeled 
as in Figure 3. Shoulder, elbow, and wrist joint’s 
configuration are denoted as control variables. The target 
users of our system (individuals with Cervical 1 to Cervical 8 
quadriplegia) are lack of hands and wrists function. Thus, the 
constrained human arm model ignores the wrist joint’s 
orientation. The DOF for the joint space (denoted as 𝑅) is 
four: 3DOF for the shoulder and 1DOF for the elbow. The 
DOF of task space (denoted as 𝑑) is three. Therefore, the 
constrained human arm system (with 𝑅 > 𝑑) is redundant. 

 

Figure 3. Schematic of  a constrained human arm system 

Let 𝒓𝒔, 𝒓𝒆, and 𝒓𝒘 denote the 3D coordinates of the 
shoulder, elbow, and wrist joint, which are acquired from 
Kinect sensor. The coordinate system of Kinect is illustrated 
as in Figure 4, and the Kinect sensor is used to obtain the 
human skeleton information from the images acquired.  

 

Figure 4. Kinect coordinate system 

The approach presented by Nisky [16] is applied to 
represent the 3D task space using shoulder and elbow joints’ 
configurations. The constrained human arm system and 
Kinect’s coordinate system is registered as illustrated in 
Figure 5. Here, 𝛼𝑠 and 𝛼𝑒 represent the absolute horizontal 
angles of the joints, while 𝛽𝑠 and 𝛽𝑒 are the absolute vertical 
angles of the joints. Then, the joint configurations of the arm 
(denoted as 𝜃) at the 𝑘th frame is expressed as 𝜃(𝑘) =
[𝛼𝑠, 𝛼𝑒 , 𝛽𝑠, 𝛽𝑒]𝑇. 

 

Figure 5. Task space representation vs. control variables for constrained 

human arm system 

C. Data Collection and Processing 

A three-step pre-processing procedure is conducted to 
reduce noise and smooth the shoulder, elbow, and hand 
trajectories: (1) outlier removal; (2) Butterworth filter; and 
(3) Kalman filter. An outlier is defined as a point that lies far 
from the mean of all the points (of a gesture instance) on the 
trajectory. This distance is measured with respect to the 
standard deviation. The points with a larger distance than 
three times the standard deviation from the mean value are 
discarded. Due to sensor noise and measurement errors, 
spatial trajectories are never accurate. In this work, a 
Butterworth filter together with a Kalman smoothing filter is 
employed to smooth the 3D trajectories. Moreover, to apply 
UCM through all gesture instances, 𝒓𝒔(𝑘), 𝒓𝒆(𝑘) and 𝒓𝒘(𝑘) 
are normalized through time frame. 

For each gesture instance, the average center of the 
shoulder is computed and treated as the origin of the human 
arm coordinate system. Then, the end effector’s (hand’s) 3D 
coordinate (denoted as 𝑿(𝑘)) is represented as  
𝑿(𝑘) = [𝑥(𝑘), 𝑦(𝑘), 𝑧(𝑘)]𝑇, where 𝑿(𝑘) is obtained using 
𝒓𝒔(𝑘) and 𝒓𝒘(𝑘) (Eq. 5).  

𝑿(𝑘) = 𝒓𝒘(𝑘) − 𝒓𝒔(𝑘) (5) 

D. Compute the Variability using UCM 

For the constrained human arm system (Figure 3), the 
relationship between the task and joint variables can be 
defined as Eq. 6. Let 𝑇 denotes the number of points 
collected from skeleton data. The length of the upper and 
lower arm can be represented as 𝐿𝑠𝑒 (Eq. 7) and 𝐿𝑒𝑤  (Eq. 8), 
respectively. 

𝑿(𝑘) = 𝑓(𝜽(𝑘)) (6) 

𝐿𝑠𝑒 =
1

𝑇
∑ ‖𝒓𝒔(𝑘) − 𝒓𝒆(𝑘)‖

𝑇

𝑘=1
 (7) 

𝐿𝑒𝑤 =
1

𝑇
∑ ‖𝒓𝒆(𝑘) − 𝒓𝒘(𝑘)‖

𝑇

𝑘=1
 (8) 

Using the method in [16], the relationship between the task 
and joint variables is expressed as in Eq. 9, where 𝑐 ∙ and 𝑠 ∙ 
are short for cos (∙) and sin (∙), respectively.  

𝑓(𝜽(𝑘)) = (

𝑥(𝑘)

𝑦(𝑘)

𝑧(𝑘)
) = (

𝐿𝑠𝑒𝑐𝛼𝑠𝑐𝛽𝑠 + 𝐿𝑒𝑤𝑐𝛼𝑒𝑐𝛽𝑒

−𝐿𝑠𝑒𝑠𝛽𝑠 − 𝐿𝑒𝑤𝑠𝛽𝑒

−𝐿𝑠𝑒𝑠𝛼𝑠𝑐𝛽𝑠 − 𝐿𝑒𝑤𝑠𝛼𝑒𝑐𝛽𝑒

) (9) 

Solutions for Eq. 6 are obtained from the geometrical model 
of the arm using a nonlinear forward kinematics equation 
[23]. A linear approximation around the mean joint 
configuration at frame 𝑘 is given by Eq. 10: 

𝑿(𝑘) − �̅�(𝑘) = 𝑱(�̅�(𝑘))(𝜽(𝑘) − �̅�(𝑘)) (10) 

where 𝜽(𝑘) and 𝑿(𝑘) are the joints’ configuration and 

hands’ position of 𝑚th trial at frame k, �̅�(𝑘) and �̅�(𝑘) are the 
mean value of the joints’ configuration and hands’ position at 

frame 𝑘 through all the trials,  and 𝑱(�̅�(𝑘)) ∈ ℝ𝑑𝑋𝑅 is the 
Jacobian matrix obtained at the mean configuration. From 
Eq. 9, the Jacobian can be obtained as Eq. 11. 
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𝐽 (�̅�(𝑘)) =

= (

−𝐿𝑠𝑒𝑠𝛼𝑠𝑐𝛽𝑠 −𝐿𝑒𝑤𝑠𝛼𝑒𝑐𝛽𝑒 −𝐿𝑠𝑒𝑐𝛼𝑠𝑠𝛽𝑠 −𝐿𝑒𝑤𝑐𝛼𝑒𝑠𝛽𝑒

0 0 −𝐿𝑠𝑒𝑐𝛽𝑠 −𝐿𝑒𝑤𝑐𝛽𝑒

−𝐿𝑠𝑒𝑐𝛼𝑠𝑐𝛽𝑠 −𝐿𝑒𝑤𝑐𝛼𝑒𝑐𝛽𝑒 𝐿𝑠𝑒𝑠𝛼𝑠𝑠𝛽𝑠 𝐿𝑒𝑤𝑠𝛼𝑒𝑠𝛽𝑒

) (11) 

At each time frame 𝑘, the deviation of the joint 
configuration is divided into two components: the component 
that does not affect the task variable (lies within the UCM) 
and a perpendicular component affecting the task variable 
(perpendicular to the UCM). The UCM can be approximated 
linearly by the null-space of the Jacobian matrix. The 
normalized basic vector of this null space (denoted as 𝜖(𝑘)) 
is obtained using Eq. 12, with dimensionality 𝑅 − 𝑑 = 1 
(𝜖(𝑘) ∈ ℝ𝑅𝑋1). 

𝐽 (�̅�(𝑘)) ∙ 𝜖(𝑘) = 0 (12) 

Based on the UCM framework, for the 𝑚th trial at time 𝑘, the 
joint variability that lies within is denoted as Eq. 13: 

𝛩𝑚|| = ∑ [𝜖𝑇(𝑘, 𝑖) ∙ (𝜽(𝑘) − �̅�(𝑘))]
𝑅

𝑖=1
∙ 𝜖(𝑘, 𝑖) (13) 

The vector component of the joint variability lying 
outside the UCM is the difference between the joint 
variability vector and the vector component of the joint 
variability that lies within the UCM as Eq. 14: 

𝛩𝑚⊥ = (𝜃 − �̅�) − 𝛩𝑛|| (14) 

The variability per DOF within UCM is estimated as Eq. 15: 

𝜎||
2 = (𝑅 − 𝑑)−1 ∙ 𝑁𝑡𝑟𝑖𝑎𝑙𝑠

−1 ∙ ∑𝛩𝑛||
2  (15) 

where 𝑁𝑡𝑟𝑎𝑖𝑙𝑠 is the number of trials. Similarly, the 
variability per DOF outside UCM is estimated as Eq. 16: 

𝜎⊥
2 = 𝑑−1 ∙ 𝑁𝑡𝑟𝑖𝑎𝑙𝑠

−1 ∙ ∑𝛩⊥
2  (16) 

The ratio between the two standard deviations is used to 
measure the level of stability of the trajectories in the task 
and user space, which in turn is associated with a particular 
gesture (Eq. 17). If σ|| > σ⊥ (RV > 1), it means that the 

variation of joint configurations doesn’t affect the control of 
the task variables. 

𝑅𝑉 =
𝜎||

𝜎⊥

 (17) 

This index is applied to evaluate the stability of each 
constrained gesture. The goal is to find the gestures with the 
highest RV values, which encode high stability (highly 
redundant). 

E. Candidate Gestures 

Figure 6 illustrates a standard gesture set designed for a 
commercial gesture console. In our previous work [21], 
applying the analytic approach described in section III, 
seventeen constrained candidate gestures (Figure 7) were 
obtained for each standard gesture in Figure 6.  

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 6. Standard gesture set 

  
(a) (b) 

   
(c) (d) 

 

                                                  (e)  

  
(f) (g) 

Figure 7. Constrained candidate gestures set 

IV. EXPERIMENTAL RESULTS 

A. Determine an Accessible Gesture Set Based on UCM 

Two male subjects with quadriplegia due to Cervical 5 
(C5) to Cervical 6 (C6) spinal cord injury (SCI) were 
recruited in the experiment. The experiment’s procedure was 
approved by Purdue Institutional Review Board (IRB) and 
Rehabilitation Hospital of Indianapolis (RHI). The condition 
for inclusion to the experiments was subjects with 
quadriplegia due to C1 to C8 SCI. During the experiment, the 
subjects were asked to perform each gesture (Figure 6 and 7, 
respectively) for five trials following the trajectories shown 
on PowerPoint slides. A Kinect sensor was used to record the 
data associated with the subjects’ skeleton motion during the 
gesture performance. The experiments were conducted with 
the subjects at the InterFACE lab in RHI with the setting 
illustrated as in Figure 8. 

 

Figure 8. Setting for the experiment 

To determine an accessible gesture set, the stability index 
(Eq. 17) was computed for the standard (Figure 6) and 
candidate gestures (Figure 7) based on the UCM method 
presented in Section III. D. The average stability index 𝑅𝑉 for 
the standard gestures in Figure 6 (with gesture index “0”) and 
constrained candidate gestures in Figure 7 (with gesture 
index “1” to “17”) is illustrated as in Figure 9. The goal for 
the UCM based approach is to select gestures with the 
highest stability (the highest bar) from each candidate set. 
From the bar graph, the gestures with the largest stability 
index were “1” (Figure 9a), “4” (Figure 9b), “8” (Figure 9c), 
“5” (Figure 9d), “2” (Figure 9e), “12” (Figure 9f), and “12” 
(Figure 9g), respectively. The corresponding average stability 
indexes were 2.001, 1.887, 1.613, 1.377, 1.804, 1.720, and 
0.978. The results revealed that all the selected gestures (with 
the highest stability) were from constrained candidate gesture 
set. This result was consistent with the subjective gesture 
selection method in [21] and validated the analytic gesture 
generation approach presented in [21]. The selected 
component for the accessible gesture set is shown as in 
Figure 10. 



  

  

(a) Stability for gestures in Figure 7 (a)  

 

(b) Stability for gestures in Figure 7 (b) 

 
(c) Stability for gestures in Figure 7 (c) 

 

(d) Stability for gestures in Figure 7 (d) 

 
(e) Stability for gestures in Figure 7 (e) 

 
(f) Stability for gestures in Figure 7 (f) 

 
(g) Stability for gestures in Figure 7 (g) 

Figure 9. Average stability indexes for the standard and constrained gestures 

 
 

(a) (b) (c) (d) (e) (f) (g) 

Figure 10. The selected gesture set based on UCM method 

B. Gesture Selection using WAM Robotic Arm 

In this section, the human arm system is approximated by 
a 7 DOF WAM robotic arm. The main assumption leading 
this part of the research is that the effort required to complete 
a gesture can be approximated by the Work exhorted by a 
robot. The WAM arm is used to perform each standard and 
constrained gesture trajectory for five trials. Figure 11 is an 
illustration of the WAM arm performing a constrained 
gesture trajectory. 

 

Figure 11. Constrained gestures performed by a WAM arm (laser light traces 
were used to highlight the trajectories) 

The torque (denoted as 𝜏) and angles (denoted as θ) for 
each joint is recorded. The total Work (Eq. 18) for each 
gesture trajectory is computed and used as an assessment of 
effort required to complete that gesture. The gesture with the 
least effort is selected to narrow down the candidate gestures 
to the final accessible gesture set. 

𝑊 = ∫ 𝜏 𝑑𝜃
𝜃2

𝜃1

 (18) 

Where, the variables 𝜃1 and 𝜃2 are the joint configuration at 
time frame 𝑡 and 𝑡 + 1, respectively. 𝜏 is the average torque 
during time frame 𝑡 and 𝑡 + 1.   

C. Integration between Stability and Work objective 

indices 

Integration was made between stability and work indices 
to determine the accessible gesture set. Let 𝑆𝑖 (𝑖 = 1,2, … , 𝑁) 
denote a set of gestures that have highest 𝛼𝑖 percentile of 
stability and 𝑊𝑖 denote a set of gestures that have the lowest 
𝛼𝑖 percentile of work. The integration method consisted of 
increasing 𝛼𝑖 iteratively by small increments until the 
intersection between the two sets is exactly one gesture 
(|𝑆𝑖 ∩ 𝑊𝑖| =1). The 𝛼𝑖% value found for each gesture class 
were 26.3%, 0% (gesture with the highest stability and lowest 
work was selected), 2.1%, 30.9%, 0%, 20.7%, and 22.6%, 
respectively.  

From the results, the indices of constrained gestures 
found by the integration method were “15”, “4”, “12”, “5”, 
“2”, “2”, and “9”, respectively (Figure 12). The final result is 
a vocabulary of a single gesture per class.  

 
(a) (b) (c) (d) (e) (f) (g) 

Figure 12. The selected gesture set using the integration method 
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V. CONCLUSION AND FUTURE WORK 

This paper presented one approach to find sets of 

accessible gestures that can be used by users with physical 

disabilities to interact with computing devices as an 

alternative to standard gesture sets commonly found in 

gaming consoles. The UCM method analyzed the variability 

and stability of human motion when they were performing 

the gestures. The stability indices were then computed to 

determine the optimality of the gestures in the candidate set. 

Later, the gestures were executed in practice by a WAM 

robotic arm, mimicking each gesture trajectory. Objective 

metrics were found through this physical implementation 

linking the human physical motion and those of the robot. 

Once the stability and physical indices were obtained from 

the UCM method and the WAM arm, an integration was 

made to determine the final accessible gesture set.  

We learned that two out of seven gestures found by the 

UCM method agreed (with the highest stability and lowest 

work) with the results obtained from the robotic arm (Figure 

10 and 12 b, e). In addition, one gesture (Figure 12 d) found 

by the integration method was the same as that (Figure 10 d) 

obtained from the UCM method. For all the gesture classes, 

the accessible gestures found were within 30.9% of the 

optimality of stability and work, respectively. These results 

indicated that the gestures found by the integration method 

incorporate the factors of subjects’ motion stability together 

with objective physical matrices. Moreover, it revealed that 

the robotic arm can be used as a tool to approximate the 

human arm system and complement the lack of subjects. It is 

effective for prototyping and designing gesture sets for able-

bodied users and subjects with disabilities. 

Future work will include: 1) expanding the experiments to 

recruit more quadriplegic subjects due to C-1 to C-8 level of 

SCI; 2) evaluating the effectiveness of the constrained 

gestures by recruiting subjects with quadriplegia to perform 

navigational tasks that can serve also as rehabilitation 

therapy.                      
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